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Abstract. We have calculated the residual entropy of two-dimensional ice on a Kagomt 
lattice by the method of series expansion. Based on the first six terms of the series, we have 
found that the residual entropy is S = Nk In W where N is the number of molecules and 
W = 1.606 15 f 0.00001, 

1. Introduction 

At temperatures well below the freezing point, ice has a residual entropy caused by an 
indeterminacy in the positions of the hydrogen atoms (Pauling 1935). The residual 
entropy of ice can be calculated using the ice rules (Bernal and Fowler 1933, Pauling 
1935, Slater 1941): ( a )  there is one and only one hydrogen atom on each bond; ( b )  there 
are exactly two hydrogen atoms near to (and away from) each oxygen atom (vertex). 

The ice rules imply that the residual entropy is given by 

S = N k I n  W (1) 
where N is the number of vertices, k is Boltzmann’s constant, and WN (for large N) is 
the number of ways to arrange the arrows such that there are precisely two arrows 
pointing towards and two arrows pointing away from each vertex. 

Nagle (1 966) developed a series expansion method which can be used to estimate 
numerically the residual entropy of ice on any lattice of coordination numbepfour. His 
results which are based on the first five terms of the series are: 

W(rea1 ice) = 1.50685 *0.00015 

W(square lattice) = 1 *540* 0.001. 
(2) 

(3) 
Lieb (1967) calculated W on a square lattice exactly by the method of transfer matrix 
(Lieb and Wu 1972). His result is 

W(square lattice) = (4)3’2 = 1.5396007 . . . , (4) 
in excellent agreement with Nagle’s result. 

The purpose of this paper is to calculate the residual entropy of ice on a KagomC 
lattice. The corresponding transfer matrix is much more complicated than that of ice on 
the square lattice and we are unable to find the exact solution. We have evaluated the 
entropy numerically by the method of series expansion. Two different series are used 
and the results are consistent with each other. Based on the first ten terms of the Nagle’s 
series without extrapolation, we have found 

W(Kagom6 lattice) = 1.6052. ( 5 )  
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A more precise result is obtained by using the series of F Y Wu (1975, private 
communication). Based on the first six terms of Wu’s series with extrapolation, we have 
found 

W(Kagom6 lattice) = 1~60615ItO~OO001. (6) 

We shall describe Nagle’s series in Q 2 and Wu’s series in $ 3 .  A conclusion is given in 
§ 4. 

2. Nagle’s series 

The ice model is equivalent to a counting problem involving closed polygon configura- 
tions. In a configuration of closed polygons, the number of bonds incident at each vertex 
is zero, two or four. The number of ice configurations is given by (Nagle 1966, Lieb and 
Wu 1972) 

W N  = c (4,” (7) 

where N is the total number of vertices, n is the number of vertices with two bonds 
incident in a given polygon configuration, and the summation is taken over all closed 
polygon configurations that can be drawn on the ice lattice. In the limit of infinite N, we 
have 

It follows from equation (7) that 1.5 is a lower bound to W. 
Equation (7) can be written in the form 

where &(N) is the total number of polygon configurations of order n. To get W from 
WN formally for a lattice with periodic boundary conditions, one simply replaces N 
wherever it appears in WN by one (Domb 1960). Therefore we have (Nagle 1966) 

w=t(  1 + n 4,,(1)3-”) 

which applies to any lattice of coordination number four. 
We now apply the above result to a KagomC lattice (figure 1) with 3N vertices. The 

lattice with periodic boundary conditions consists of N hexagons and 2 N  triangles. 
Following Nagle, we write 

The reason why we use W3, instead of WN is to make sure that 4,( 1) are integers. In the 
limit of infinite N we have 
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Figure 1. A Kagome lattice (full line) and the associated honeycomb lattice (broken line). 

The calculation of #,,( 1) is straightforward. For example, we have &(N) = 2 N  since 
we can draw exactly 2 N  triangles (each one has three vertices) on the KagomC lattice 
with periodic boundary conditions. The first four terms of the series (1  1) can be written 
down easily: 

MN)= 2 N  #4(W = 3 N  #dN) = 6 N  #,j(N)= 16N+N(2N-4) .  
(13) 

The N(2N-4) part of &(N) corresponds to two unconnected triangles. The polygons 
which can be drawn on the KagomC lattice with n = 3 , 4 , 5  are shown in figure 2. For 
n > 6, the calculation of #,, (1) becomes quite tedious. We have evaluated #"( 1) up to 
n = 12. The results are summarized in table 1.  

n 

3 n v 

Figure 2. The polygons which can be drawn on the Kagomt lattice with n = 3 , 4  and 5.  

Adding up the terms which we have computed yields 

W = $( 1 + 0*22587)"3 = 1.6052. 

In the case of the square lattice, n is an even integer and Nagle (1966) plotted 
4n+2(l)/q5n( 1) against l/n. He obtained a fairly smooth curve. By straightforwardly 
extrapolating that curve he was able to compute estimates for #,, with n > 12. The same 
technique fails in the case of the KagomC lattice because it is clear from table 1 that the 
relation between #,,+,(l)/#,,(l) and l /n  cannot be represented by a smooth curve. 
Therefore we are unable to compute estimates for #,, with n > 12. 
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Table 1. Summary table of Nagle’s series expansion for the KagomC lattice. The column 
headings mh give the number m of hexagons surrounded by the connected polygons of nth 
order. The column headings md give the number m of disconnected parts in a given closed 
polygon configuration of order n. 

n Oh l h  2h 3h 4h 5h 6h 7h 2d 3d 

3 2  
4 3  
5 6  
6 14 2 
7 36 12 
8 93 48 3 
9 244 172 24 2 

10 648 579 147 27 3 
11 1716 1902 744 198 42 6 
12 4603 5849 3168 1137 336 66 14 1 

2 
3 
6 

-2 14 
-12 36 
-5 1 93 
-210 6 238 
-843 60 62 1 
-3318 384 1674 
-12923 2114 -23 4342 

1.5 
2 
2.333 
2371  
2.583 
2.559 
2.609 
2.696 
2.594 

3. Wu’s series 

It has been pointed out by F Y Wu (1975, private communication) that the ice model on 
a KagomC lattice is equivalent to a counting problem involving closed polygon 
configurations on the associated honeycomb lattice (figure 1). Consider a KagomC 
lattice with 3 N  vertices, the number of ice configurations is 

where b and 1 are respectively the number of bonds and loops in a given polygon 
configuration, and the summation is taken over all closed polygon configurations that 
can be drawn on the associated honeycomb lattice. To see this, notice that there exists a 
22N+’-b to 1 mapping between ice configurations on the KagomC lattice (with periodic 
boundary conditions) and the closed polygon configurations on the associated 
honeycomb lattice according to the following rule. 

Mapping rule: consider a triangle on the KagomC lattice (figure 3 ) .  A vertex is 
connected to the centre of the triangle by a broken line if the arrows around this triangle 
are arranged in such a way that one arrow points away from and one arrow points 
towards this vertex. Otherwise a vertex is connected to the centre of the triangle by a full 
line. The full lines drawn on bonds of the associated honeycomb lattice form closed 
polygons. 

It is clear from equation (15) that 

W =  lim (W3N)1’3N>22’3= 1.587401..  
iv-m 

Wu’s series is simpler to calculate than Nagle’s series because the closed polygons on the 
honeycomb lattice never intersect with each other. We rewrite equation (15) in the form 
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Figure 3. The mapping between ice configurations on a KagomC lattice and closed polygon 
configurations on the associated honeycomb lattice. 

where n is the number of honeycombs surrounded by the closed polygons on each 
configuration, and each term is a partial sum of the series in equation (15) over all 
configurations with the same order n. In the limit of infinite N we have 

‘ n  / 

We have evaluated &( 1) up to n = 6. The results are summarized in table 2. Adding 
up the terms which we have computed yields 

W =  4”3( 1*035713)1/3. (19) 

Table 2. Summary table of Wu’s series expansion for the honeycomb lattice. The column 
headings md give the number m of disconnected parts in a given closed polygon 
configuration of order n. 

n Id 2d 3d 4d 

1 1  1 3  
2 6  -3 3 10 
3 68 -54 16 30 124 
4 1000 -1012 498 -106 380 14.929 
5 24(1059) -2’(633) 23(1617) -4740 789 5673 16.449 
6 25(Y807) -2’(1667) 24(20221) -2*(39289) 46170 -6308 93314 

In figure 4, we have plotted &+l(l)/&(l)  against l / n  and obtained a fairly smooth 
curve. By extrapolating this curve, we can calculate estimates for +,, with n >6. We 
have found 

1.606 16 = 41’3( 1.0357 13 + 0.0001 17 + 0*000055)”3 > W > 1.60614 

= 41’3(1.0357 13 + 0.0001 17 +0~000012)”3, (20) 
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32t 

l / n  

Figure 4. The term ratio 4,,+,(1)/4,,(1) against l / n  for Wu's series. 

where the 0.000117 comes from the extrapolated values for the terms n = 7-12, 
0.000055 and 0.000012 come from lumping all the higher n terms together with a ratio 
of 293/32  and 22/32 respectivelyt. Therefore we conclude 

W(Kagom6 lattice) = 1.60615 f 0.00001. (21) 

4. Conclusion 

We have computed numerically the residual entropy of two-dimensional ice on a 
Kagomt lattice by the method of series expansion. Theoretically the series of Nagle is 
equivalent to the series of Wu. However, for practical purposes Wu's series converges 
much faster than Na le's series. This is due to the fact that the zeroth order term of Wu's 
series gives W = 4'/'= 1.587401, which is considerably larger than the corresponding 
value of 1.5 given by Nagle's series. Wu's series has another advantage. One can 
calculate estimates for higher-order terms in Wu's series by extrapolating the term 
ratios while the same thing cannot be done for Nagle's series. This is probably due to the 
fact that the Kagomt lattice consists of two different kinds of polygons (triangle and 
hexagon) while the honeycomb lattice consists of only one kind of polygon (hexagon). 
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t From figure 4 we get 4n+1/4. = 29.5 and 22 respectively for n =CO and 12. 
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